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Abstract

Here we presents an elucidation of the idea of the strong NP-hardness proofs

of some scheduling problems with variable job processing times presented in our

papers. In the original papers, we provided the relevant fundamental calculations

and additionally also brief descriptions of the ideas of the proofs. We assumed that

more detailed descriptions were redundant for the considered strong NP-hardness

proofs, since the calculations were given. However, we have been informed that

few readers focused only on the descriptions of the ideas omitting the calculations.

Therefore, the objective of this note is to clearly point out the relation between the

ideas and the calculations.

Although there are no new results in this note, we hope it will help to understand

our proofs of the strong NP-hardness (and first of all how the transformations were

obtained), if some calculation details are confusing or overlooked during reading the

original papers.
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1 Introduction

First of all, there are no new results nor changes concerning the original papers in this

note, it is only an elucidation of the proofs presented in [1], [2], [3], [4], [5]. Namely, it

considers the idea of the strong NP-hardness proofs (concerning distribution of parameters

λi) presented at the beginning of part “If” in the mentioned papers. Note that the

fundamental for the proofs were the calculations and the idea was additional to help the

readers find out how the transformations were obtained. Although, we thought that more

detailed descriptions of the idea was redundant (since it was provided additionally), we

have been informed that few readers focused only on the idea omitting the calculations.

Therefore, in the further part of this note, we will elucidate the relation between the idea

and the calculations, to help readers understand the relevant assumptions and the flow of

the papers.
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2 Computational complexity

The considered problems with the variable job processing times (i.e., papers) can be di-

vided into two groups. The first concerns the single processor problems with the maximum

lateness minimization (or the makespan minimization with deadlines) [1], [2], [3]. In the

second group, there are the flowshop scheduling problem with the makespan minimization

[4] and the single processor with the makespan minimization and release dates [5].

Further, we will present only the parts “If” of the considered proofs, since only this

part caused problems for some readers. Recall that we have to show that if λi = 0 does

not hold for all i = 1, . . . ,m, then at least one job is late ([1], [2], [3]) or the makespan is

greater than the given value Cmax(π) > y ([4], [5]).

“If.” The answer for 3-Partition problem (3PP) is no. Therefore, there is no partition of

the set X ′ of 3PP such that
∑

q∈X′
i
xq = B holds for all i = 1, . . . , m, thereby

∑
q∈Xi

xq = B

does not hold for all i = 1, . . . , m. Note that |Xi| = 3 for i = 1, . . . , m (follows from

the property of the optimal schedule) regardless of the partition of 3PP. Recall that∑
q∈Xi

xq = B+λi for i = 1, . . . , m and from the assumption B
4

<xq < B
2

(for q=1, . . . , 3m)

follows that 3
4
B <

∑
q∈Xi

xq < 3
2
B, therefore, λi ∈ (−B

4
, B

2
). Since the answer for 3PP is

no, thus, for any partition of the set {1,. . . ,3m} into disjoint subsets X1, . . . , Xm, there

must exist at least two subsets Xu and Xw (u 6= w) such that
∑

q∈Xu
xq 6=

∑
q∈Xw

xq for

u,w ∈ {1, . . . , m} and u < w.

2.1 The maximum lateness minimization

In this part, we consider the strong NP-hardness proofs of the maximum lateness mini-

mization problems with variable processing times [1] or the makepan minimization prob-

lem with variable job processing times and deadlines ([2], [3]), which leads to the same

conclusions.

At first, let us present the idea of the proofs, where it is sufficient (from the perspective

of the criterion value and taking into consideration the given transformation) to consider

only two types of cases, since any distribution of λi (following the partition of jobs) can

be reduced to them (without increasing the criterion value). The parameters of jobs for

the transformation from 3PP to the given problems were obtained using similar approach,

based on the following cases (here, we have simplified them):

(a) λu > 0, λw < 0 and
∑i

l=u λl >0 for i=u, . . . , w − 1,

(b) λu < 0, λw > 0 and
∑i

l=u λl <0 for i=u, . . . , w − 1,

where u,w ∈ {1, . . . ,m} and u < w and λi = 0 for i ∈ {1, . . . , u − 1} ∪ {w + 1, . . . , m},
thereby

∑w
l=u λl = 0. Furthermore, there was shown that cases (a) and (b) can be analysed

separately for searching the transformation and during the proving process.
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Regardless of (a) and (b), the relevant calculations in these papers were done for

(a’) λu > 0,

(b’) λu < 0 and λw > 0 and
∑i

l=u λl < 0 for i = u, . . . , w − 1 (and
∑w

l=u λl ≥ 0),

where for both λi = 0 for i = 1, . . . , u− 1.

However, the detailed descriptions of the cases seemed to be redundant in the presence

of the calculations and they were omitted in the original paper. Nevertheless, in this short

note, we will provide them with the main calculations (for their full derivation, the reader

is refereed to the original paper).

2.1.1 The proof in [1]

In this part, we will elucidate the proof presented in [1].

At first analyse cases (here denoted by (a’)), where λu > 0 (in fact λu ≥ 1 since they

are integer numbers) and λi = 0 for i = 1, . . . , u − 1. Recall, the completion time of the

last job in Eu+1 is

CEu+1 > dEu+1 + (N + 3)uλu − 3

4
Bu.

Since λu > 0 and N =mB> 3
4
B, then CEu+1 >dEu+1 , thereby Lmax > 0.

Now let us recall the second part of the proof (here denoted by (b’)). In these general

opposite cases (complement to (a’)) λu < 0 and λi = 0 for i = 1, . . . , u − 1 (w ≤ m). It

can be easily observed that there must exist the set Xw (u < w) for which
∑w

l=u λl ≥ 0,

i.e., the first (starting from u) for which
∑w

l=u λl < 0 does not hold. In other words, we

have
∑i

l=u λl < 0 for i = u, . . . , w − 1 (since λu < 0 and λw > 0).

Note that the completion time of the last job in Ei for i = u + 1, . . . , w + 1 (and

w ≤ m− 1) can be estimated:

CEi
> dEi

+ (N + 3)
i−1∑

l=u

lλl − 3

4
B(i− 1).

On this basis and taking into consideration
∑w

i=uiλi =w
∑w

i=uλi−
∑w−1

i=u

∑i
l=uλl, the com-

pletion time of the last job in Ew+1 (where w ≤ m− 1) is:

CEw+1 > dEw+1 +(N + 3)
(
w

w∑
i=u

λi−
w−1∑
i=u

i∑

l=u

λl

)
− 3

4
Bw.

Note that
∑i

l=u λl < 0 for i = u, . . . , w − 1 and
∑w

i=u λi ≥ 0. However, the above is
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minimal if
∑w

i=u λi = 0, thus, we have

CEw+1 > dEw+1−(N + 3)
w−1∑
i=u

i∑

l=u

λl− 3

4
Bw > dEw+1 + (N + 3)− 3

4
Bw > dEw+1 ,

for w ≤ m−1, thereby Lmax > 0. If w = m, then the completion time of the last scheduled

job in Xm can be estimated as follows:

CXm > D + (N + 3)
(
w

m∑
i=u

λi −
m−1∑
i=u

i∑

l=u

λl

)
− 3

4
Bm.

Again the above is minimal if
∑m

i=u λi =0 (since w=m) and CXm >D+(N+3)−3
4
Bm>D,

thereby Lmax >0.

Therefore, for any feasible distribution of λi (where are least two λi are not zero), we

have Lmax > 0.

On this basis, it can be easily observed for cases (a’) that Lmax > 0 regardless of the

the values of λi for i > u, thus, without loss of generality we can assume that
∑i

l=u λi > 0

for i = u, . . . , w − 1, λi = 0 for i = w + 1, . . . , m and
∑w

l=u λl = 0. Thereby, the analysed

cases (a’) can be reduced to (a). On the other hand, for cases (b’), the job completion time

CEw+1 (or CXm if w = m) is minimal if
∑w

l=u λl ≥ 0 is minimal, thereby for
∑w

l=u λl = 0.

Moreover, the values of λi for i > w are immaterial, hence we can assume λi = 0 for

i > w. Thereby, without loss of generality the analysed cases (b’) can be reduced to (b).

2.1.2 The proof in [2]

In this part, we will elucidate the proof presented in [2] similarly as for [1].

Obviously for case (a’), we have Ceu+1 > d̄eu+1 and without loss of generality it can be

reduced to (a).

However, for case (b’), we have showed the calculations assuming that λi = 0 for i > w.

It follows from the fact that values λi for i > w are important only for terms, where we

have
∑w

i=u lλi =w
∑w

i=uλi−
∑w−1

i=u

∑i
l=uλl, and they are minimized if

∑w
i=u λi = 0, i.e., in

this proof for Cew+1 . Therefore, it was easy to observe that Cew+1 > d̄ew+1 regardless of λi

for i > w based on the calculations concerning Cmax; they were similar (see Eq. (11) and

Eq. (12) in [2]). Thus, the relevant calculations were omitted. However, in this note we

will provide them for w < m (based in Eq. (11) for k = w + 1):

Cew+1 > d̄ew+1 +β
[
pe

(
w

w∑
i=u

λi−
w−1∑
i=u

i∑

l=u

λl

)
− 1

4
mB(3Hm+H)

]
.

Note that
∑i

l=u λl < 0 for i = u, . . . , w − 1 and Cew+1 is minimized if
∑w

l=u λl ≥ 0 is

minimized, thereby
∑w

l=u λl = 0, hence we obtain Cew+1 > d̄ew+1 (similarly as for Cmax)
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regardless of λi for i > w. Thus, the distribution of λi for i > w is immaterial. Obviously,

if w = m, then i > w is also immaterial and Cmax is analysed, which is greater than y as

shown in [2]. Therefore, without loss of generality for this proof, cases (b’) can be reduced

to (b).

2.1.3 The proof in [3]

In [3] similarly as in [2], we have omitted calculations concerning Cew+1 and assumed for

(b’) (without loss of generality) that λi = 0 for i > w; it follows from the same reasons

(see also Eq. (26) and Eq. (27) in [3]). However to show it clearly we will provide the

calculations for w < m (based on Eq. (26) for k = w + 1 and recall that
∑w

l=u λl ≥ 0):

Cew+1 > d̄ew+1 + β2
(
pe+3H+B

)[
w∑

i=u

iλi +
w∑

i=u

i−1∑

l=u

λl

]
− β

(
2mB2 + m2B2

)

+ β2pe

(
pe+3H+B

)[ w∑
i=u

i2λi+
w∑

i=u

2(i− 1)
i−1∑

l=u

λl

]
−β24m2Bpe

(
B+4mH+mB2H

)
.

Recall that
w∑

i=u

iλi +
w∑

i=u

i−1∑

l=u

λl = w

w∑
i=u

iλi ≥ 0,

w∑
i=u

i2λi +
w∑

i=u

2(i− 1)
i−1∑

l=1

λl = w2

w∑
i=u

λi −
w∑

i=u

i−1∑

l=u

λi ≥ −
w∑

i=u

i−1∑

l=u

λi,

thus, Cew+1 > d̄ew+1 + β2m2B2
(

p2
e

4m2B2N
− 1

)
= d̄ew+1 regardless of λi for i > w. Similarly

as for [2], the distribution of λi for i > w is immaterial. Obviously, if w = m, then i > w is

also immaterial and Cmax is analysed, which is greater than y as shown in [3]. Therefore,

without loss of generality for this proof, cases (a’) and (b’) can be reduced to (a) and (b).

2.2 The makespan minimization

In this part, we consider the strong NP-hardness proofs of the makespan minimization

problems with variable processing times in the following environments: flowshop [4] and

the single processor with release dates [5].

At first, let us present the idea of the proof, where it is sufficient (from the perspective

of the criterion value and taking into consideration the given transformation) to consider

only two types of cases, since any distribution of λi (following the partition of jobs) can

be reduced to them (without increasing the criterion value). The parameters of jobs for

the transformation from 3PP to the given problems were obtained using similar approach,

based on the following cases (here, we have simplified them):

(a) λu < 0, λw > 0 and
∑i

l=u λl <0 for i=u, . . . , w − 1,
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(b) λu > 0, λw < 0 and
∑i

l=u λl >0 for i=u, . . . , w − 1,

where u,w ∈ {1, . . . ,m} and u < w and λi = 0 for i ∈ {1, . . . , u − 1} ∪ {w + 1, . . . , m},
thereby

∑w
l=u λl = 0. Furthermore, there was shown that cases (a) and (b) can be analysed

separately for searching the transformation and during the proving process. The cases

are the same as for [1], [2], [3], but denoted in the reversed order.

First of all, in the cases (a) and (b) in the related papers, it is assumed that λi = 0 for

i ∈ {1, . . . , u− 1} ∪ {w + 1, . . . , m} and
∑w

l=u λl = 0, since it does not affect the relation

between Cmax(π) and y (it results from the calculations given in the papers as we will

show further). Regardless of (a) and (b), the relevant calculations in these papers were

done (in fact) for

(a’) λw > 0,

(b’) λu > 0 and λw < 0 and
∑i

l=u λl > 0 for i = u, . . . , w − 1 (and
∑w

l=u λl ≥ 0),

where for both λi = 0 for i = w + 1, . . . , m.

However, the detailed descriptions of the cases seemed to be redundant in the presence

of the calculations and they were omitted in the original paper. Nevertheless, in this short

note, we will provide them with the main calculations (for their full derivation, the reader

is refereed to the original paper). It will be elucidated based on [4] (it is similar for [5]).

At first recall the first part of the proof (here denoted by (a’)), where λw > 0 (in fact

λu ≥ 1 since they are integer numbers) and λi = 0 for i = w + 1, . . . , m. Recall the

completion time of the last job in Xw on M2 can start not earlier than at C
(1)
Xw

(i.e., S
(1)
ew+1)

regardless of the distribution of λi for i < w) and it can be estimated as follows:

C
(2)
Xw

≥ S(1)
ew+1

+V (2)(Xw) = S(1)
ew+1

+p(1)
ew+1

+(m−w+1)λw ≥ C(1)
ew+1

+(m−w+1)λw > C(1)
ew+1

.

Since λw > 0 and λi = 0 for i = w +1, . . . ,m, then C
(2)
Xi
≥ C

(1)
ei+1 +(m−w +1)λw > C

(1)
ei+1 ,

and we have

Cmax(π)=max{C(1)
em+1

, C
(2)
Xm
}+p(2)

em+1
≥C(1)

em+1
+(m−w+1)λw+p(2)

em+1
=y+(m−w+1)λw >y.

Note that [4] showed additionally the calculations concerning the minimum values of C
(2)
Xu

(however it was only informative).

Now let us recall the second part of the proof (here denoted by (b’)). In these general

opposite cases (complement to (a’)) λw < 0 and λi = 0 for i = w + 1, . . . , m (w ≤ m). It

can be easily observed that there must exist the set Xu (u < w) for which
∑w

l=u λl ≥ 0,

i.e., the first (starting from w) for which
∑w

l=u λl < 0 does not hold. In other words, we

have
∑i

l=u λl > 0 for i = u, . . . , w − 1 (since λw < 0 and λu > 0).
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Note that Xu can start on M2 not earlier than at C
(1)
Xu

(i.e., S
(1)
eu+1) (according to the

transformation) regardless of the distribution of λi for i = 1, . . . , u− 1, i.e., it is minimal

for C
(1)
Xu

. Therefore, the completion time of the last job in Xu on M2 equals

C
(2)
Xu

= S(1)
eu+1

+V (2)(Xu)=S(1)
eu+1

+p(1)
eu+1

+(m−u+1)λu =C(1)
eu+1

+(m−u+1)λu >C(1)
eu+1

.

Following this way and knowing that
∑i

l=u(m − l + 1)λl = (m − i + 1)
∑i

l=u λl +∑i−1
l=u

∑l
k=u λk, we have (for i = u, . . . , w − 1)

C
(2)
Xi

= C(1)
ei+1

+
i∑

l=u

(m− l + 1)λl = C(1)
ei+1

+ (m− i + 1)
i∑

l=u

λl +
i−1∑

l=u

l∑

k=u

λk.

Note that
∑i

k=u λk > 0 for i = u, . . . , w − 1 and
∑w

k=u λk ≥ 0. However, the above

is minimal (for cases (b’)) if
∑w

k=u λk = 0, hence C
(2)
Xi

> C
(1)
ei+1 (for i = u, . . . , w − 1).

Therefore, we have

C
(2)
Xw

= C(1)
ew+1

+ (m− w + 1)
w∑

l=u

λl +
w−1∑

l=u

l∑

k=u

λk ≥ C(1)
ew+1

+
w−1∑

l=u

l∑

k=u

λk > C(1)
ew+1

,

C(2)
ew+1

≥ S(1)
ew+2

+
w−1∑

l=u

l∑

k=u

λk > S(1)
ew+2

.

Since λi = 0 for i = w + 1, . . . , m, then C
(2)
Xi
≥ C

(1)
ei+1 +

∑w−1
l=u

∑l
k=u λk. Thus, we obtain

Cmax(π) = max{C(1)
em+1

, C
(2)
Xm
}+p(2)

em+1
≥C(1)

em+1
+

w−1∑

l=u

l∑

k=u

λk+p(2)
em+1

=y+
w−1∑

l=u

l∑

k=u

λk >y.

Observe that Cmax(π) > y regardless of the distribution of λi for i < u and the criterion

value is minimized if
∑w

k=u λk ≥ 0 is minimized, thereby for
∑w

k=u λk = 0.

Based on the calculations, it can be easily observed for cases (a’) that Cmax(π) > y

regardless of the the values of λi for i < w. However, Xw starts later for λw−1 > 0 than

for λw−1 ≤ 0 (and can start later if the same relation is hold for i < w − 1). However,

to be formal, there must exist Xu (u < w) such that
∑w

l=uλl = 0.Thus, without loss of

generality for this proof, we can assume that λl = 0 for l = 1, . . . , u− 1 and
∑i

l=u λl < 0

for i = u, . . . , w − 1 (which have the minimal contribution to C
(2)
Xw

) and
∑w

l=u λl = 0.

Thus, the analysed cases (a’) can be reduced to (a).

Additionally for cases (b’) note that Cmax > y regardless of the distribution of λi

for i < u and the criterion value is minimized if
∑w

l=u λl ≥ 0 is minimized, thereby for∑w
l=u λl = 0. Observe also that Xu starts later for λu−1 > 0 than for λu−1 ≤ 0 (and can

start later if the same relation is hold for i < u−1). Therefore, λi = 0 for i = 1, . . . , u−1

have the smallest contribution to C
(2)
Xu

(actually none contribution). Thus, without loss of
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generality, for this proof we can assume
∑w

l=u λl = 0 and
∑i

l=u λl > 0 for i = u, . . . , w− 1

and λi = 0 for i ∈ {1, . . . , u − 1} ∪ {w + 1, . . . , m}. Thereby, without loss of generality

the analysed cases (b’) can be reduced to (b).

3 Conclusions

After the transformation was obtained the calculations were done for (a’) and (b’) (how-

ever, as we have shown the calculations for (a) and (b) were sufficient).

It is worth mentioning that the presented approach supports (based on (a) and (b))

the construction of the transformations such that it is easier to include the terms
∑i

l=u lλl

([1], [2], [3]) or
∑i

l=u(m − l + 1)λl ([4], [5]) into the completion times of relevant jobs.

It was very helpful during the process of searching the transformation that guarantees

Lmax ≤ 0 or Cmax ≤ y if and only if
∑

q∈X′
i
xq = B for i = 1, . . . , m. Furthermore, in the

discussed proofs if Lmax > 0 or Cmax(π) > y for cases described by (a) and (b), then they

still hold for other distributions of λi (i.e., (a’) and (b’)).

We hope that above elucidation will help to understand the presented proofs of the

strong NP-hardness (and first of all how the transformations were obtained), if some

calculation details are confusing or overlooked during reading the original papers.
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