
A critical note on

“Strong NP-hardness of scheduling problems with

learning or aging effect”

RadosÃlaw Rudek

WrocÃlaw University of Economics,
Komandorska 118/120, 53-345 WrocÃlaw, Poland
Tel.: +48-71-368-0378; Fax.:+48-71-368-0376

E-mails: radoslaw.rudek@ue.wroc.pl

Abstract

This critical note concerns the paper [A. Janiak, M. Y. Kovalyov, M. Lichtenstein, Strong
NP-hardness of scheduling problems with learning or aging effect. Annals of Operations
Research, 206:577–583, 2013]. We show that the so called “corrections” presented by Janiak
et al. are exaggerated, since they concerns only some informal simplifications in our proofs.
The “formalization” of these proofs is given here, which require only few comments that are
the same for all the proofs. Moreover, we also prove that the paper by Janiak et al. contains
basic algebraic mistakes that were the source of their misleading conclusions resulting in
finding artificial errors in our papers. Finally, we highlight some parts of our papers to
dispel doubts and to help confused readers to better understand our proofs of the strong
NP-hardness.
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1 Introduction

This critical note concerns the paper [6] by Janiak et al., that were trying to show that the strong
NP-hardness proofs in our papers ([1], [2],[3]) contained errors, which required their corrections
([6]). Moreover, they claimed that our proofs in [4], [5] had such errors that they were unable to
corrected, thereby the computational complexity of the related problems is still an open issue.

Nevertheless, in this paper, we will show that the so called “corrections” presented in [6]
are exaggerated, since they concerns only some informal simplifications in our proofs. The
“formalization” of these proofs will be shown here, which requires only few comments that are
the same for all the proofs. It also show the strength of our approach that supports the strong
NP-hardness proving process. Moreover, we will also prove that the claims of Janiak et al. that
computational complexity of the problems analysed in [4] and [5] “remains unknown because of
another mistake”, which they are unable to correct, follows from their own mistake with adding
parameters.

Since some simplifications in our proofs were exaggerated by Janiak et al. [6] to the so called
“mistake”, thus, we feel that readers deserve more detailed elucidation, which will be given.

2 Problems formulation

Following Janiak et al. [6], we will analyse the problems in the given order:

1. FP2|LEstep|Cmax [1],
2. 1|rj , LEstep|Cmax [2],
3. 1|pj(v) = ajv|Lmax [3],
4. 1|pj(v) = a− bjv|Lmax [3],
5. 1|d̄j , p̃j(v) = pj(1 + β

∑v−1
l=1 p[l])αj , αj ∈ {0, 1}|Cmax [4],

6. 1|d̄j , AE|Cmax [5].
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The definitions of the problems are provided in the related papers and also in [6]. All of
them are based on a reduction from the 3-Partition problem (3PP), which is defined as follows.

3-Partition (3PP): Given 3m+1 positive integers x1, . . . , x3m and B such that
∑3m

j=1 xj = mB

and B
4 < xq < B

2 for j = 1, . . . , 3m, is there a partition of the set X = {1, . . . , m} into m disjoint
subsets Xi such that

∑
j∈Xi

xj = B for i = 1, . . . , m?

3 “Mistake” and its “corrections”

The so called “mistake” found by Janiak et al. [6] concerns the part “if” in our proofs, where the
answer “no” for 3PP implied “no” for the decision problem, which computational complexity
was proved. Namely, there is no partition of the set X of 3PP such that

∑
j∈Xi

xj = B holds for
all i = 1, . . . , m. In other words, if

∑
j∈Xi

xj = B + λi (where λi ∈ (−B
4 , B

2 )) for i = 1, . . . , m,
then there are at least two values such that λu 6= 0 and λw 6= 0, where 1 ≤ u < w ≤ m.

First of all, Janiak et al. provided counter-examples concerning λi values, which in their
meaning showed errors in our proofs. However, even for their cases all our proofs work, i.e., the
answer in the part ”if” is “no” if it is “no” for 3PP.

Later on, Janiak et al. provided their own approach to “correct”, but in fact they provide
only a different notation for our proofs, which is based on our reductions and properties of the
optimal solutions. It is worth highlighting that for proving the strong NP-hardness often the
most difficult is to find a relevant reduction (in this case they use ours).

In fact so called “mistake” concerns the fact that in our proof we reduced the range of pa-
rameters λi to the most significant values, which have the relevant impact on the job completion
times, i.e., if the answer is “no” for them, then it is also “no” even for a broader range. Now,
we are aware that we should give additional comments, but we will provide them here.

Let us recall the cases (a) and (b) in part “if” for [1] and [2]:

(a) λu < 0, λw > 0 and
∑i

l=u λl <0 for i=u, . . . , w − 1,

(b) λu > 0, λw < 0 and
∑i

l=u λl >0 for i=u, . . . , w − 1,

where u,w ∈ {1, . . . ,m} and u < w and λi = 0 for i ∈ {1, . . . , u− 1} ∪ {w + 1, . . . ,m}, thereby∑w
l=u λl = 0. Furthermore, there was shown that cases (a) and (b) can be analysed separately

for searching the transformation and during the proving process.
Note that for [3], [4] and [5], cases (a) and (b) are interchanged:

(a) λu > 0, λw < 0 and
∑i

l=u λl >0 for i=u, . . . , w − 1,

(b) λu < 0, λw > 0 and
∑i

l=u λl <0 for i=u, . . . , w − 1,

where u,w ∈ {1, . . . , m} and u<w and λi =0 for i∈{1, . . . , u− 1}∪ {w+1, . . . ,m}, ∑w
l=uλl =0.

The so called “mistake” concerns that we provided cases (a) and (b), in other words, we
assumed that λi = 0 for i ∈ {1, . . . , u − 1} ∪ {w + 1, . . . ,m}, thereby

∑w
l=u λl = 0. However,

it was a simplification only, and an informal description in the proofs. Now, we are aware
that we should provide the general distribution of λi and after that we should explained, why
we presented the reduced range of this parameters, whereas calculations were relevant for the
general cases.

Namely, to better understood the proofs presented in our papers [1], [2], cases (a) and (b)
can be provided at the end of the proof, whereas the following more general cases should be
given at the beginning:
(a’) λw > 0,
(b’) λu > 0 and λw < 0 and

∑i
l=u λl > 0 for i = u, . . . , w − 1 (and

∑w
l=u λl ≥ 0),

where for both λi = 0 for i = w + 1, . . . , m and 1 ≤ u < w ≤ m.
Observe that (a’) covers cases, where λw > 0 is the first (starting from m towards 1) non-zero

element; the values of λi for i < w are arbitrary. On the other hand, (b’) covers other cases.
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Namely, λw < 0 is the first (starting from m towards 1) non-zero element and λu is the first
element (starting from m towards 1) such that

∑w
l=u λl ≥ 0. Thus, λu > 0 and

∑i
l=u λi > 0

for i = u, . . . , w − 1; the values of λi for i < u are arbitrary. Therefore, (a’) and (b’) cover all
possible distributions of λi for i = 1, . . . , m. Furthermore, cases (a’) and (b’) can be analysed
separately, i.e., there is no sense to analyse them simultaneously (see [1]).

It is the same for [3], [4] and [5], where the general cases that cover all possible distributions
of λi are given as follows:

(a”) λu > 0,
(b”) λu < 0 and λw > 0 and

∑i
l=u λl < 0 for i = u, . . . , w − 1 (and

∑w
l=u λl ≥ 0),

where 1 ≤ u < w ≤ m and for both λi = 0 for i = 1, . . . , u− 1.
In other words, (a”) covers cases, where λu > 0 is the first (starting from 1 towards m)

non-zero element; the values of λi for i > u are arbitrary. On the other hand, (b”) covers other
cases. Namely, λu < 0 is the first (starting from 1 towards m) non-zero element and λw is the
first element (starting from 1 towards m) such that

∑w
l=u λl ≥ 0. Thus, λw > 0 and

∑i
l=u λi < 0

for i = u, . . . , w − 1; the values of λi for i > w are arbitrary. It can be observed that (a”) and
(b”) cover all possible distributions of λi for i = 1, . . . ,m. Some symmetry can be observed to
cases (a’) and (b’).

Observe that the “formalization” of the proofs requires only to provide cases (a’) and (b’)
(for [1] and [2]) or (a”) and (b”) (for [3], [4] and [5]) instead of (a) and (b). Thus, no more
“corrections” are required as it was claimed by Janiak et al. [6]. It is elucidated in details in the
next part. Moreover, we will also show that without loose of generality the general cases may
be reduced to (a) and (b).

3.1 Problem FP2|LEstep|Cmax [1]

Janiak et al. [6] provided some new calculations as so called “required corrections” for our proof
in [1], whereas the following is sufficient to see the proof.

Namely, instead of (a) and (b) in [1], it was better to provide (at the beginning of the
proof) the following two cases: (a’): λw > 0; (b’): λu > 0 and λw < 0 and

∑i
l=u λl > 0 for

i = u, . . . , w − 1 (and
∑w

l=u λl ≥ 0); where for both λi = 0 for i = w + 1, . . . , m. Since the
relevant calculations in [1], where provided taking into consideration general cases (i.e., (a’) and
(b’)), then no changes in calculations are done. Thus, it makes the proof formal and general
and no more “corrections” are required. However, to easier follow the proof and the discussion,
we recall some of its parts.

Consider case (a’) note that regardless of the distribution of λi for i < w, the first job in Xw

can start on M2 not earlier than C
(1)
Xw

= S
(1)
ew+1 , thus,

C
(2)
Xw

≥ S(1)
ew+1

+ V (2)(Xw) ≥ C(1)
ew+1

+ (m− w + 1)λw > C(1)
ew+1

.

Since λw > 0 and λi = 0 for i = w + 1, . . . ,m, then C
(2)
Xi

> C
(1)
ei+1 , and we have

Cmax =max{C(1)
em+1

, C
(2)
Xm
}+p(2)

em+1
≥C(1)

em+1
+(m−w+1)λw+p(2)

em+1
=y+(m−w+1)λw >y.

Consider (b’) Xu can start on M2 not earlier than at C
(1)
Xu

(i.e., S
(1)
eu+1) regardless of the

distribution of λi for i < u, thus,

C
(2)
Xu

≥ S(1)
eu+1

+V (2)(Xu)=C(1)
eu+1

+(m−u+1)λu >C(1)
eu+1

.

Following this way and knowing that
∑i

l=u(m− l +1)λl = (m− i+1)
∑i

l=u λl +
∑i−1

l=u

∑l
k=u λk,

we have (for i = u, . . . , w − 1)

C
(2)
Xi

≥ C(1)
ei+1

+
i∑

l=u

(m− l + 1)λl = C(1)
ei+1

+ (m− i + 1)
i∑

l=u

λl +
i−1∑

l=u

l∑

k=u

λk.
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Since
∑i

k=u λk > 0 for i = u, . . . , w − 1, hence C
(2)
Xi

> C
(1)
ei+1 . We have

C
(2)
Xw

= C(1)
ew+1

+ (m− w + 1)
w∑

l=u

λl +
w−1∑

l=u

l∑

k=u

λk ≥ C(1)
ew+1

+
w−1∑

l=u

l∑

k=u

λk > C(1)
ew+1

,

C(2)
ew+1

≥ S(1)
ew+2

+
w−1∑

l=u

l∑

k=u

λk > S(1)
ew+2

.

Since λi = 0 for i = w + 1, . . . , m, then C
(2)
Xi
≥ C

(1)
ei+1 +

∑w−1
l=u

∑l
k=u λk. Thus, we obtain

Cmax = max{C(1)
em+1

, C
(2)
Xm
}+p(2)

em+1
≥C(1)

em+1
+

w−1∑

l=u

l∑

k=u

λk+p(2)
em+1

=y+
w−1∑

l=u

l∑

k=u

λk >y.

Note that there are no new calculations, since the above is taken from [1] to show that
the relations hold. The only changes (underlined) were some additional comments and the
replacement “=” with “≥” (typos). Observe also that Cmax > y regardless of the distribution
of λi for i < u and the criterion value is minimized if

∑w
k=u λk ≥ 0 is minimized, thereby for∑w

k=u λk = 0.

3.2 Problem 1|rj, LEstep|Cmax [2]

For the proof [2] the following is sufficient to see the proof.
Namely, instead of (a) and (b) in [2], it was better to provide (at the beginning of the

proof) the following two cases: (a’): λw > 0; (b’): λu > 0 and λw < 0 and
∑i

l=u λl > 0 for
i = u, . . . , w − 1 (and

∑w
l=u λl ≥ 0); where for both λi = 0 for i = w + 1, . . . , m. Since the

relevant calculations in [2], where provided taking into consideration general cases (i.e., (a’) and
(b’)), then no changes in calculations are done. Thus, it makes the proof formal and general
and no more “corrections” are required. However, to easier follow the proof, we recall some of
its parts.

For case (a’), regardless of the distribution of λi for i < w, we have

CXw(π) ≥ rew−1 +1+6(m− w + 1)B+
m− w + 1
2m(m + 1)

(B + λw)=rew +
m− w + 1
2m(m + 1)

λw >rew .

Since λi = 0 for i > w, then each job ei (i > w) starts after its release date. Finally, the
completion time of Xw is estimated

CXm(π) ≥ 3(m + 1)mB +
1
4
B + m− 1 +

m− w + 1
2m(m + 1)

λw = rem +
m− w + 1
2m(m + 1)

λw > rem ,

and it results that Cmax(π) = Cem = max{CXm(π), rem}+ 1 > rem + 1 = y.
Consider case (b’), where regardless of the distribution of λi for i < w, the first job in Xu

starts not earlier than its release date. Thus, we have

CXi(π) ≥ rei +
1

2m(m + 1)

[
(m− i + 1)

i∑

l=u

λl +
i−1∑

l=u

l∑

k=u

λk

]
.

Since
∑i

l=u λl >0 for i=1,. . ., w−1, then CXi > rei . Thus, the completion time of Xw is

CXw(π) ≥ rew +
1

2m(m + 1)

w−1∑

l=u

l∑

k=u

λk > rew ,

and it results that Cmax > rem + 1 = y, since λi = 0 and CXi > rei for i = w + 1, . . . , m. Thus,
for all the cases the criterion value Cmax(π) is greater than y.

Note that there are no new calculations, since the above is taken from [2] to show that
the relations hold. The only changes (underlined) were some additional comments and the
replacement “=” with “≥” (typos).
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3.3 Problem 1|pj(v) = ajv|Lmax [3]

Janiak et al. [6] provided a page of so called “required corrections” for our proof, whereas the
following is sufficient to see the proof.

Namely, instead of (a) and (b) in [3], it was better to provide (at the beginning of the
proof) the following two cases: (a”): λu > 0; (b”) λu < 0 and λw > 0 and

∑i
l=u λl < 0 for

i = u, . . . , w−1 (and
∑w

l=u λl ≥ 0); where for both λi = 0 for i = 1, . . . , u−1. Since the relevant
calculations in [3], where provided taking into consideration general cases (i.e., (a”) and (b”)),
then no changes in calculations are done. Thus, it makes the proof formal and general and no
more “corrections” are required. However, to easier follow the proof, we recall some of its parts.

Consider case (a”). Recall, the completion time of the last job in Eu+1 is

CEu+1 > dEu+1 + (N + 3)uλu − 3
4
Bu.

Since λu > 0 and N = mB > 3
4B, then CEu+1 > dEu+1 , thereby Lmax > 0, regardless of λi for

i > u.

Consider case (b”). The completion time of the last job in Ei for i = u + 1, . . . , w + 1 (and
w ≤ m− 1) can be estimated:

CEi > dEi + (N + 3)
i−1∑

l=u

lλl − 3
4
B(i− 1).

On this basis and taking into consideration
∑w

i=uiλi =w
∑w

i=uλi−
∑w−1

i=u

∑i
l=uλl, the completion

time of the last job in Ew+1 (where w ≤ m− 1) is:

CEw+1 > dEw+1 +(N + 3)
(
w

w∑

i=u

λi−
w−1∑

i=u

i∑

l=u

λl

)
− 3

4
Bw.

Since
∑i

l=u λl < 0 for u ≤ i < w and the above is minimal for
∑w

i=u λi = 0, thereby

CEw+1 > dEw+1−(N + 3)
w−1∑

i=u

i∑

l=u

λl− 3
4
Bw > dEw+1 + (N + 3)− 3

4
Bw > dEw+1 ,

for w ≤ m− 1, thereby Lmax > 0. If w = m, then the completion time of the last scheduled job
in Xm can be estimated as follows:

CXm > D + (N + 3)
(
w

m∑

i=u

λi −
m−1∑

i=u

i∑

l=u

λl

)
− 3

4
Bm > D + (N + 3)− 3

4
Bm > D.

Again the above is minimal if
∑m

i=u λi = 0 (since w = m) and CXm > D+(N +3)− 3
4Bm > D,

thereby Lmax >0.
Note that there are no new calculations, since the above is taken from [3] to show that the

relations hold. Only some additional comments are given to support the reader (underlined).

3.4 Problem 1|pj(v) = a− bjv|Lmax [3]

Note that Janiak et al. [6] claimed for the considered problem that “a minor modification
is needed to apply [their] correction for the problem 1|pj(v) = a − bjv|Lmax”. However, the
relevant part of our proof was omitted in [3], since it was exactly the same as for the problem
1|pj(v) = av|Lmax, thus, no additional comments are required here.
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3.5 Problem 1|d̄j, p̃j(v) = pj(1 + β
∑v−1

l=1 p[l])
αj , αj ∈ {0, 1}|Cmax [4]

Janiak et al. [6] claimed that they had found a mistake in our strong NP-hardness proof in
[4]. To prove it, they showed that in the part “if” of the proof, the maximum completion time
Cmax(T ) calculated for the following sequence T = (e1, . . . , em, 1, . . . , 3m) can be in some cases
smaller than the deadline D, i.e., Cmax(T ) < D. We will show, that their claim is incorrect.
Namely, they added some numbers incorrectly, and first and foremost, our proof is correct, which
will be shown further.

Recall that Janiak et al. calculated the maximum completion time for T as follows:

Cmax(T ) = pem + mB + βP2(m,B) = D − 6m2B + β(P2(m, B)− P1(m,B)),

where P1(B,m) and P2(m,B) are non negative polynomials dependent on m and B. However,
they incorrectly summarized values, since pj = H + xj = 2mB + xj , but the above is calculated
for pj = xj , which is incorrect (the mistake is underlined).

The correct maximum completion time for the sequence T is as follows:

Cmax(T ) = pem + 6m2B + mB + βP2(m,B) = D + β(P2(m,B)− P1(m,B)),

where the missing term in [6] is underlined. The above always hold the relation Cmax(T ) > D
as it is required in our proof in [4].

Janiak et al. to show the incorrectness of our proof, assumed that P2(m,B)−P1(m,B) < 0,
but it is incorrect assumption, which is not even calculated. For the given T (or the part “if”),
we have always P2(m, B)−P1(m,B) > 0. On the other hand, if P2(m,B)−P1(m,B) > 0, then
always Cmax(T ) > D.

In the further part, we will focus on our proof in [4]. Namely, instead of (a) and (b) in [4],
it was better to provide (at the beginning of the proof) the following two cases: (a”): λu > 0;
(b”) λu < 0 and λw > 0 and

∑i
l=u λl < 0 for i = u, . . . , w− 1 (and

∑w
l=u λl ≥ 0); where for both

λi = 0 for i = 1, . . . , u − 1. Thus, it makes the proof formal and general. However, to easier
follow the proof, we recall some of its parts.

Obviously for case (a”), we have Ceu+1 > d̄eu+1 regardless of λi for i > u (see [4]).
Consider case (b”). It is easy to observe that Cew+1 > d̄ew+1 regardless of λi for i > w.

However, the calculations were omitted, since they are similar to Cmax (see Eq. (11) and
Eq. (12) in [4]). Nevertheless, in this note we will provide them for w <m (based on Eq. (11)
for k=w+1):

Cew+1 > d̄ew+1 + β
[
pe

(
w

w∑

i=u

λi −
w−1∑

i=u

i∑

l=u

λl

)
− 1

4
mB(3Hm + H)

]
.

Note that
∑i

l=u λl < 0 for i = u, . . . , w− 1 and Cew+1 is minimized if
∑w

l=u λl ≥ 0 is minimized,
thereby

∑w
l=u λl = 0, hence we obtain Cew+1 >d̄ew+1 (similarly as for Cmax) regardless of λi for

i > w. Thus, the distribution of λi for i > w is immaterial. Obviously, if w = m, then i > w is
also immaterial and Cmax is analysed, which is greater than y as shown in [4].

3.6 Problem 1|d̄j, AE|Cmax [5]

Janiak et al. [6] claimed that they had found a mistake in our strong NP-hardness proof in
[5]. To prove it, they showed that in the part “if” of the proof, the maximum completion time
Cmax(T ) calculated for the following sequence T = (e1, . . . , em, 1, . . . , 3m) can be in some cases
smaller than the deadline D, i.e., Cmax(T ) < D. We will show, that their claim is incorrect.
Namely, they added some numbers incorrectly, and first and foremost, our proof is correct, which
will be shown further.

Recall that Janiak et al. calculated the maximum completion time for T as follows:

Cmax(T ) = pem + mB + βR1(m,B) + β2R2(m,B)
= D − 24m3B2 + β(R1(m,B)−Q1(m,B)) + β2(R2(m,B)−Q2(m,B)),
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where R1(B,m), R2(B, m), Q1(B, m) and Q2(m,B) are non negative polynomials dependent on
m and B. However, they incorrectly summarized values, since pj = H + xj = 8m2B2 + xj , but
the above is calculated for pj = xj , which is incorrect (the result of the mistake is underlined).

The correct maximum completion time for the sequence T is as follows:

Cmax(T ) = pem + 24m3B2 + mB + βR1(m,B) + β2R2(m, B)
= D + β(R1(m,B)−Q1(m,B)) + β2(R2(m,B)−Q2(m,B)),

where the missing term in [6] is underlined. The above always hold the relation Cmax(T ) > D
as it is required in our proof in [5].

Janiak et al. to show the incorrectness of our proof, assumed that R1(m,B)−Q1(m,B)) < 0
and β2(R2(m,B)−Q2(m,B) < 0, but it is incorrect assumption, which was not even calculated.
For the given T (or the part “if”), we have always β(R1(m,B) − Q1(m,B)) + β2(R2(m,B) −
Q2(m,B)) > 0 for 4m2B2/p2

e ≤ β ≤ 1 (see [5]), thereby Cmax(T ) > D.
In the further part, we will focus on our proof in [5]. Namely, instead of (a) and (b) in [5],

it was better to provide (at the beginning of the proof) the following two cases: (a”): λu > 0;
(b”) λu < 0 and λw > 0 and

∑i
l=u λl < 0 for i = u, . . . , w− 1 (and

∑w
l=u λl ≥ 0); where for both

λi = 0 for i = 1, . . . , u − 1. Thus, it makes the proof formal and general. However, to easier
follow the proof, we recall some of its parts.

Consider case (a”). Obviously, we have Ceu+1 > d̄eu+1 regardless of λi for i > u (as it was
shown in [5]).

In [5] similarly as in [4], we have omitted calculations concerning Cew+1 and assumed for (b”)
(without loss of generality) that λi = 0 for i > w; it follows from the same reasons (see also Eq.
(26) and Eq. (27) in [5]). However to show it clearly we will provide the calculations for w < m
(based on Eq. (26) for k = w + 1 and recall that

∑w
l=u λl ≥ 0):

Cew+1 > d̄ew+1 + β2
(
pe+3H+B

)[
w∑

i=u

iλi +
w∑

i=u

i−1∑

l=u

λl

]
− β

(
2mB2 + m2B2

)

+ β2pe

(
pe+3H+B

)[ w∑

i=u

i2λi+
w∑

i=u

2(i− 1)
i−1∑

l=u

λl

]
−β24m2Bpe

(
B+4mH+mB2H

)
.

Observe that
w∑

i=u

iλi +
w∑

i=u

i−1∑

l=u

λl = w

w∑

i=u

iλi ≥ 0,

w∑

i=u

i2λi +
w∑

i=u

2(i− 1)
i−1∑

l=1

λl = w2
w∑

i=u

λi −
w∑

i=u

i−1∑

l=u

λi ≥ −
w∑

i=u

i−1∑

l=u

λi,

thus, Cew+1 > d̄ew+1 + β2m2B2
(

p2
e

4m2B2N
− 1

)
= d̄ew+1 regardless of λi for i > w. Similarly as

for [4], the distribution of λi for i > w is immaterial. Obviously, if w = m, then i > w is also
immaterial and Cmax is analysed, which is greater than y as shown in [5]. Therefore, without
loss of generality for this proof, cases (a”) and (b”) can be reduced to (a) and (b).

3.7 An elucidation of a simplification

Based on the calculations for [1] and [2], it can be easily observed for case (a’) that Cmax > y
holds regardless of the the values of λi for i < w. However, Xw starts later for λw−1 > 0 than
for λw−1 ≤ 0 (and can start later if the same relation is hold for i < w − 1). However, to be
formal, there must exist Xu (u < w) such that

∑w
l=uλl≥ 0. Since λi for i < w does not affect

the relation Cmax > y, thus, we may assume that
∑w

l=uλl =0 (it changes nothing in the relation
Cmax > y). Therefore, without loss of generality for these proofs, we may assume that λl = 0 for
l = 1, . . . , u− 1 and

∑i
l=u λl < 0 for i = u, . . . , w − 1 and

∑w
l=u λl = 0. Thus, the analysed case

(a’) may be reduced to case, where
∑w

l=u λl = 0 (denoted by (a) in [1] and [2]). Additionally for
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case (b’) note that Cmax > y holds regardless of the distribution of λi for i < u and the criterion
value is minimized if

∑w
l=u λl ≥ 0 is minimized, thereby for

∑w
l=u λl = 0. Observe also that Xu

starts later for λu−1 > 0 than for λu−1 ≤ 0 (and can start later if the same relation is hold for
i < u − 1). Therefore, λi = 0 for i = 1, . . . , u − 1 have the smallest contribution to C

(2)
Xu

for [1]
(and CXu for [2]). Thus, without loss of generality, for these proofs we may assume

∑w
l=u λl = 0

and
∑i

l=u λl > 0 for i = u, . . . , w−1 and λi = 0 for i ∈ {1, . . . , u−1}∪{w+1, . . . , m}. Thereby,
without loss of generality for these proof the analysed case (b’) may be reduced to a case, where∑w

l=u λl = 0 (denoted by (b) in [1] and [2]). In other words, for the analysed proof, if Cmax > y
hold for the cases denoted by (a) and (b) (where it is assumed that

∑w
l=u λl = 0), it also holds

for general (a’) and (b’).
Similar relations hold for [3], [4] and [5]. It is easy to observe that for case (a”) applied for

instance to [3], we have Lmax > y regardless of λi for i > u. Since λi for i > u are immaterial,
then we may assume that

∑w
l=u λl = 0, it changes nothing in the given relation. On the other

hand, for case (b”), we have Lmax > y regardless of λi for i > w. Furthermore,
∑w

l=u λl = 0 has
the minimal contribution to the criterion value for λi, where i ∈ {u, . . . , w}. Thereby, if Lmax

holds for (a) and (b) (i.e.,
∑w

l=u λl = 0) it can be easily observed that it also holds for (a”) and
(b”), thus, they may be reduced to (a) and (b).

Finally, it can be observed that if we assume
∑w

l=u λl = 0 for (a’) and (b’) and also for (a”)
and (b”), then they are reduced to cases (a) and (b). Thus, the same cases can be used for
different criteria, which is comfortable. Although in the mentioned papers, the simplified cases
were considered, these proofs were correct. However, it may seem to be less formal and confusing
for some readers. Note that such simplification is sufficient for the discussed problems, but it
does not have to hold for other problems.

4 Conclusions

Using so called “corrections” and the approach by Janiak et al. [6], they were unable to apply
them for [4], [5], since in fact, they concerned informal simplification in our proofs (reduced
ranges of parameters). Therefore, it is sufficient only to “formalize” the proofs (or to elucidate
the applied simplification), which required only to provide few comments, i.e., cases (a’) and
(b’) (for [1] and [2]) or (a”) and (b”) (for [3], [4] and [5]) instead of (a) and (b). Thus, no more
“corrections” are required as it was claimed by Janiak et al. [6]. Furthermore, we also showed
the general cases can be reduced (without loos of generality) to (a) and (b) for the considered
proofs.
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